新技术在医学专业教学、科研及临床中的应用研究。优化医学专业知识培训的流程,探索最佳实践模式。
最新论文:
Liu, A., Zhang, Y., Xia, Y., Wan, X., Zhou, L., Song, W., Zhu, S., & Yuan, X. (2024). Classes U-Net: A method for nuclei segmentation of photoacoustic histology imaging based on information entropy image classification. Biomedical Signal Processing and Control, 91, 105932.
Jia, Z., Zhou, L., Li, H., Ni, J., Chen, D., Guo, D., Cao, B., Liu, G., Liang, G., Zhou, Q., Yuan, X., & Ni, Y. (2024). Digital-SMLM for precisely localizing emitters within the diffraction limit. Nanophotonics, 13(19), 3647-3661.
Zhan, Y., Dai, R., Li, F., Cheng, Z., Zhuo, Y., Shan, F., & Zhou, L. (2024). Repeatability and reproducibility of deep learning features for lung adenocarcinoma subtypes with nodules less than 10 mm in size: A multicenter thin-slice computed tomography phantom and clinical validation study. Quantitative Imaging in Medicine and Surgery, 14(8), 5396-5407.
Zhang, S., Li, Z., & Jiang, Z. (2023). Digital-SMLM for precisely localizing emitters within the diffraction limit. Nanophotonics, 12(3), 456-465.
Zhou, L., Chang, L., Li, J., Long, Q., Shao, J., Zhu, J., Liew, A. W. C., Wei, X., Zhang, W., & Yuan, X. (2023). Aided diagnosis of thyroid nodules based on an all-optical diffraction neural network. Quantitative Imaging in Medicine and Surgery, 13(9), 5713-5726.
Li, R., Zhou, L., Wang, Y., Shan, F., Chen, X., & Liu, L. (2023). A graph neural network model for the diagnosis of lung adenocarcinoma based on multimodal features and an edge-generation network. Quantitative Imaging in Medicine and Surgery, 13(8), 5333-5348.
Zhan, K., Wang, Y., Zhuo, Y., Zhan, Y., Yan, Q., Shan, F., Zhou, L., Chen, X., & Liu, L. (2023). An uncertainty-aware self-training framework with consistency regularization for the multilabel classification of common computed tomography signs in lung nodules. Quantitative Imaging in Medicine and Surgery, 13(9), 5536-5554.